Exercice 8.1: Direct or indirect bandgap
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1) The absorption coefficient has been plotted as a function of frequency for two
different semiconductors. Explain what type of semiconductor is associated to

each of these graphs.

2) How would these graphs evolve with temperature?

Exercise 8.1 solution.

1)

2)

As shown in the lecture, the optical absorption dependence on the frequency is different
for direct and indirect bandgap semiconductors. For a direct bandgap, one expects an

absorption coefficient described by:
a~C- /hv —Eg

while for an indirect bandgap the expected relationship is more complicated:
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By identifying the characteristic evolution in each of the graphs, one can say that graph
(a) corresponds to a direct bandgap semiconductor (evolution as y = Vx), while graph
(b) corresponds to an indirect bandgap semiconductor (evolution as y = x2).

As put forth in previous expressions for a, it appears that the absorption edge should not
be dependent on the temperature for direct bandgap semiconductors (see note below).
For indirect bandgap however, one expects a temperature dependence. This is physically
meaningful: for an indirect transition, a photon and a phonon interact together to fulfil
momentum and energy conservation:
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The transition is energetically allowed when Ejp0t0n + Epnonon = Eg- As one increases
the temperature, the phonons occupy states of higher energy (this is the Maxwell-
Boltzmann weighting, that we find back in the above expressions). As a consequence of
higher energy phonons, lower energy photons will be sufficient to exceed the bandgap.

Therefore, the absorption edge starts at lower energy when the temperature is
increased. As an example:
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At (very) low temperature, only the phonon emission process is possible, which occurs for
photon energies higher than the bandgap.

Note: In reality, besides the effect on phonon populations, an increase in temperature also
results in thermal expansion of the semiconductor’s lattice. This modifies the bandgap as well.
For indirect bandgap this contribution is generally negligible, for direct bandgap

semiconductors, this can modify the absorption edge. This behaviour is empirically described

by Varshni’s equation.
2

E,(T) = E,(0) — T“+ ;

Where E;(0), @ and B are material constants.



Exercice 8.2: Bandgap determination
In the figure below is plotted the absorption coefficient as a function of the photon energy
for InAs. Based on this plot, is the semiconductor direct or indirect? Determine its bandgap.
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Exercise 8.2 solution.

This time, a? is plotted, and exhibits a linear behaviour in this region close to the bandgap.
Based on the expressions above, InAs is a direct bandgap semiconductor. Its absorption
coefficient can be described by @ ~ C - \/hv — E; for hv > Ej, and a = 0 for hv < E;. Thus,
since we plot a?, the linear interpolation obtained for hv > E, crosses the x-axis for hv = E.
We deduce a direct bandgap of around 0.35 eV.



Exercice 8.3: Transmission of a sample

Indium phosphide is a direct gap llI-V semiconductor with a band gap of 1.35 eV at room
temperature. The absorption coefficient at 775 nm is 3.5 x 10® m ~1. A platelet sample
1 um-thick is made with anti-reflection coated surfaces. Estimate the transmission of the
sample at 620 nm.

Exercise 8.3 solution.

The sample is anti-reflection coated, and so we do not need to consider multiple reflections.
We therefore calculate the transmission from T = e~% because there is no reflection. The
wavelength of 775 nm corresponds to a photon energy of 1.60 eV, which is greater than Eg.
Similarly, 620 nm corresponds to a photon energy of 2.00 eV, which is also above Eg. We can

therefore use that « « ,/hv — E, so:

a(620nm)  /2.00 —E; 16
a(775nm) ~ [160 —E,

where we have used Eg = 1.35 eV. This implies that (620 nm) = 5.6 X 10°m™! = 5.6 um™1,
and hence that al = 5.6. We thus obtain the final result:

T(620 nm) = exp(—al) = 0.37%

Note: The value of T calculated in this example is only an estimate because we have ignored
the excitonic effects and we have assumed that the parabolic band approximation is valid,
even though we are quite a long way above Eg. The experimental value of a(620 nm) is
actually about 15% larger than the value calculated here.



