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Exercice 8.1: Direct or indirect bandgap 
 
 
 
 
 
 
 
 
 
 
 
 

1) The absorption coefficient has been plotted as a function of frequency for two 
different semiconductors. Explain what type of semiconductor is associated to 
each of these graphs. 

 
2) How would these graphs evolve with temperature? 

 
 
Exercise 8.1 solution. 

 
1) As shown in the lecture, the optical absorption dependence on the frequency is different 

for direct and indirect bandgap semiconductors. For a direct bandgap, one expects an 
absorption coefficient described by: 

𝛼𝛼 ∼ 𝐶𝐶 ⋅ �ℎ𝜈𝜈 − 𝐸𝐸𝑔𝑔 

 
while for an indirect bandgap the expected relationship is more complicated:  
 

𝛼𝛼 ∼
�ℎ𝜈𝜈 − 𝐸𝐸𝑔𝑔 + 𝐸𝐸𝑝𝑝�
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exp
𝐸𝐸𝑝𝑝
𝑘𝑘𝑘𝑘 − 1

+
(ℎ𝜈𝜈 − 𝐸𝐸𝑔𝑔 − 𝐸𝐸𝑝𝑝)2 

1 − exp
𝐸𝐸𝑝𝑝
𝑘𝑘𝑘𝑘

 

 
By identifying the characteristic evolution in each of the graphs, one can say that graph 
(a) corresponds to a direct bandgap semiconductor (evolution as 𝑦𝑦 = √𝑥𝑥), while graph 
(b) corresponds to an indirect bandgap semiconductor (evolution as 𝑦𝑦 = 𝑥𝑥2). 

 
2) As put forth in previous expressions for 𝛼𝛼, it appears that the absorption edge should not 

be dependent on the temperature for direct bandgap semiconductors (see note below). 
For indirect bandgap however, one expects a temperature dependence. This is physically 
meaningful: for an indirect transition, a photon and a phonon interact together to fulfil 
momentum and energy conservation:  

 

(a) (b) 
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The transition is energetically allowed when 𝐸𝐸𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐸𝐸𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 𝐸𝐸𝑔𝑔. As one increases 
the temperature, the phonons occupy states of higher energy (this is the Maxwell-
Boltzmann weighting, that we find back in the above expressions). As a consequence of 
higher energy phonons, lower energy photons will be sufficient to exceed the bandgap. 
Therefore, the absorption edge starts at lower energy when the temperature is 
increased. As an example: 

 
 

At (very) low temperature, only the phonon emission process is possible, which occurs for 
photon energies higher than the bandgap. 
 
Note: In reality, besides the effect on phonon populations, an increase in temperature also 
results in thermal expansion of the semiconductor’s lattice. This modifies the bandgap as well. 
For indirect bandgap this contribution is generally negligible, for direct bandgap 
semiconductors, this can modify the absorption edge. This behaviour is empirically described 
by Varshni’s equation. 

𝐸𝐸𝑔𝑔(𝑇𝑇) = 𝐸𝐸𝑔𝑔(0) −
𝛼𝛼𝑇𝑇2

𝑇𝑇 + 𝛽𝛽
 

Where 𝐸𝐸𝑔𝑔(0), 𝛼𝛼 and 𝛽𝛽 are material constants. 
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Exercice 8.2: Bandgap determination 
In the figure below is plotted the absorption coefficient as a function of the photon energy 
for InAs. Based on this plot, is the semiconductor direct or indirect? Determine its bandgap.  
 

 
 
 
Exercise 8.2 solution. 
 
This time, 𝛼𝛼2 is plotted, and exhibits a linear behaviour in this region close to the bandgap. 
Based on the expressions above, InAs is a direct bandgap semiconductor. Its absorption 
coefficient can be described by 𝛼𝛼 ∼ 𝐶𝐶 ⋅ �ℎ𝜈𝜈 − 𝐸𝐸𝑔𝑔 for ℎ𝜈𝜈 > 𝐸𝐸𝑔𝑔, and 𝛼𝛼 = 0 for ℎ𝜈𝜈 < 𝐸𝐸𝑔𝑔. Thus, 
since we plot 𝛼𝛼2, the linear interpolation obtained for ℎ𝜈𝜈 > 𝐸𝐸𝑔𝑔 crosses the x-axis for ℎ𝜈𝜈 = 𝐸𝐸𝑔𝑔. 
We deduce a direct bandgap of around 0.35 eV. 
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Exercice 8.3: Transmission of a sample 
Indium phosphide is a direct gap III–V semiconductor with a band gap of 1.35 eV at room 
temperature. The absorption coefficient at 775 nm is 3.5 × 106 m −1. A platelet sample 
1 µm-thick is made with anti-reflection coated surfaces. Estimate the transmission of the 
sample at 620 nm. 
 
 
Exercise 8.3 solution. 
 
The sample is anti-reflection coated, and so we do not need to consider multiple reflections. 
We therefore calculate the transmission from 𝑇𝑇 = e−𝛼𝛼𝛼𝛼 because there is no reflection. The 
wavelength of 775 nm corresponds to a photon energy of 1.60 eV, which is greater than Eg. 
Similarly, 620 nm corresponds to a photon energy of 2.00 eV, which is also above Eg. We can 
therefore use that 𝛼𝛼 ∝ �ℎ𝜈𝜈 − 𝐸𝐸𝑔𝑔, so: 
 

𝛼𝛼(620 𝑛𝑛𝑛𝑛)
𝛼𝛼(775 𝑛𝑛𝑛𝑛) =  

�2.00 − 𝐸𝐸𝑔𝑔
�1.60 − 𝐸𝐸𝑔𝑔

= 1.6 

 
where we have used Eg = 1.35 eV. This implies that 𝛼𝛼(620 𝑛𝑛𝑛𝑛) = 5.6 × 106𝑚𝑚−1 = 5.6 𝜇𝜇𝑚𝑚−1, 
and hence that 𝛼𝛼𝛼𝛼 = 5.6. We thus obtain the final result: 
 

𝑇𝑇(620 𝑛𝑛𝑛𝑛) = exp(−𝛼𝛼𝛼𝛼) = 0.37% 
 
Note: The value of T calculated in this example is only an estimate because we have ignored 
the excitonic effects and we have assumed that the parabolic band approximation is valid, 
even though we are quite a long way above Eg. The experimental value of 𝛼𝛼(620 𝑛𝑛𝑛𝑛) is 
actually about 15% larger than the value calculated here. 


